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Abstract. In recent years more and more security sensitive applications
use passive smart devices such as contactless smart cards and RFID
tags. Cost constraints imply a small hardware footprint of all compo-
nents of a smart device. One particular problem of all passive smart
devices such as RFID tags and contactless smart cards are the harsh
power constraints. On the other hand, active smart devices have to min-
imize energy consumption. Recently, many lightweight block ciphers have
been published. In this paper we present three different architecture of
the ultra-lightweight algorithm present and highlight their suitability
for both active and passive smart devices. Our implementation results
of the serialized architecture require only 1000 GE. To the best of our
knowledge this is the smallest hardware implementation of a crypto-
graphic algorithm with a moderate security level.

1 Background

Smart cards are widely in use for authentication, access control, and payment
purposes. Their applications range from access control of ski ressorts and soc-
cer stadiums over parking lots to highly secured areas of both company and
goverment buildings. MasterCard, Visa, and JCB are currently defining speci-
fications for contact and contactless payments using smart cards in their EMV
standards [17, 16]. In recent years there has been an increasing trend towards
contactless smart cards. In fact, contactless smart cards are a special subset of
passive RFID tags [8]. With regards to the terminology of pervasive computing
both can be summarised by the term passive smart devices. Even for very sen-
sitive data passive smart devices are used, e.g. Visa payWave card [22], hence,
security mechanism play a key role for these applications.

Many smart devices, especially commodities, are very cost sensitive. If the
volumes are large enough –and this is indicated by the term pervasive– an ap-
plication specific integrated circuit (ASIC) will nearly always be cheaper than
a programmable micro computer. In hardware the price of an ASIC is roughly
equivalent to the area in silicon it requires. The area is usually measured in
µm2, but this value depends on the fabrication technology and the standard cell
library. In order to compare the area requirements independently it is common



to state the area as gate equivalents (GE). One GE is equivalent to the area
which is required by the two-input NAND gate with the lowest driving strength
of the corresponding technology. The area in GE is derived by dividing the area
in µm2 by the area of a two-input NAND gate.

Moreover, one particular problem of all passive smart devices such as RFID
tags and contactless smart cards are the harsh power constraints. Depending on
the transmission range of the application (close, proximity, or vincinity coupling),
the power constraints can be as strict as a few µW. Therefore, the ASIC and
all of its components have to be designed with special care for the total power

consumption. Active smart devices, such as wireless sensor nodes, RFID reader
handhelds, or contact smart cards have their own power supply, i.e. a battery, or
are powered by the reading device via a physical contact. Therefore, the power
constraints are more relaxed for this device class. The main design goal here is
to minimize the total energy consumption and the overall execution time.

Block ciphers are the working horses of the cryptographic primitives. Un-
fortunately, a vast majority of block ciphers have been developed with good
software properties in mind, which in turn means that the gate count for a hard-
ware implementation is rather high. In order to cope with this situation quite
a few cryptographic algorithms have been published that are especially opti-
mized for ultra-constrained devices. Examples for lightweight stream ciphers are
Grain and Trivium and examples for lightweight block ciphers are DESXL [13],
HIGHT [5], mCrypton [14], PRESENT [3], and SEA [15]. This research area is
also referred to as low cost or lightweight cryptography. Some designers kept the
algorithm secret in order to gain additional security by obscurity. However, the
cryptanalyses of two widely used lightweight algorithms show that this violation
of the Kerckhoff principle [12] is prohibitive: Keeloq [1] and Mifare both were
broken shortly after their algorithm was reverse-engineered [2, 18].

present is an aggressively hardware optimized ultra-lightweight block ci-
pher, first presented at CHES 2007 [3]. According to the authors present was
developed with a minimal hardware footprint (1570 GE) in mind such that it is
suitable for passive RFID tags. However, in this work we show that a serialized
implementation can be realized with as few as 1000 GE, which make it especially
interesting for all kind of low cost passive smart devices. Moreover we propose
two additional architectures which are suitable for low cost and high end active
smart devices.

In the remainder of this work, we first recall the specification of present

in Section 2. We propose three different hardware architectures of present in
Section 3 and the implementation results are evaluated in Section 4. Finally, in
Section 5 we conclude the paper.

2 The PRESENT algorithm

present is a substitution-permutation network with 64-bits block size and 80
or 128 bits of key (from here on referred to as present for the 80 bit version
and present-128 for the 128 bit version). In the remainder of this article we
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Fig. 1. A top-level algorithmic description of present.

focus on present, because 80-bits provide a security level which is sufficient
for many RFID driven applications. present has 31 regular rounds and a final
round that only consists of the key mixing step. One regular round consists of a
key mixing step, a substitution layer, and a permutation layer.

The substitution layer consists of 16 S-Boxes in parallel that each have 4 bit
input and 4 bit output (4x4): S : F

4

2
→ F

4

2
. The S-Box is given in hexadecimal

notation according to the following table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

The bit permutation used in present is given by the following table. Bit i

of state is moved to bit P (i).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

The key schedule of present consists of a 61-bit left rotation, an S-Box,
and an XOR with a round counter. Note that present uses the same S-Box for
the datapath and the key schedule, which allows to share resources. The user-
supplied key is stored in a key register and its 64 most significant (i.e. leftmost)
bits serve as the round key. The key register is rotated by 61 bit positions to
the left, the left-most four bits are passed through the present S-Box, and the
round_counter value i is exclusive-ored with bits k19k18k17k16k15 of K with the



least significant bit of round_counter on the right. Figure 1 provides a top-level
description of the present algorithm. For further details, the interested reader
is referred to [3].

3 Three different architectures of PRESENT

implementations

For different application scenarios there exists also different demands on the
implementation and the optimization goals. An implementation for a low cost
passive smart device, such as RFID tags or contactless smart cards requires small
area and power consumption, while the throughput is of secondary interest. On
the other hand, an RFID reader device that reads out many devices at the same
time, requires a higher throughput, but area and power consumption are less
important. Active smart devices, such as contact smart cards do not face strict
power constraints but timing and sometimes energy constraints. Main key figures
of the present block cipher are area, throughput, and power consumption. We
propose three implementations of present, so one can choose the architecture
that meets the given requirements most suitable. The first architecture is round
based as described in [3]. It is optimized in terms of area, speed, and energy.
The second architecture uses pipelining technique and generates a high through-
put. The third architecture is serialized and is minimized in terms of area and
power consumption. In order to decrease the area requirements even further, all
architectures can perform encryption only. This is sufficient for encryption and
decryption of data when the block cipher is operated for example in counter
mode. Besides this it allows a fairer comparison with other lightweight imple-
mentations. For example the landmark implementation of Feldhofer et al. [7].
Finally, using the round based architecture of present128, we present a crypto-
graphic co-processor with encryption and decryption capabilities. Note that the
choice of an appropriate I/O interface is highly application specific, while at the
same time can have a significant influence on the area, power, and timing figures.
In order to have a clearer estimation of the cryptographic core’s efficiency we
did therefore not implement any special input or output interfaces, but rather
chose a natural width of 64-bit input, 64-bit output and 80 or 128- bit key input,
respectively.

3.1 Round-based architecture

This architecture represents the direct implementation of the present top-level
algorithm description in Figure 1, i.e. one round of present is performed in one
clock cycle. The focus lies on a compact solution but at the same time with an
eye on the time-area product. To save power and area a loop based approach
is chosen. The balance between the 64-bit datapath and the used operations
per clock cycle leads to a good time-area product. Due to the reuse of several
building blocks and the round structure, the design has a high energy efficiency
as well. The architecture uses only one substitution and permutation layer. So



the datapath consists of one 64-bit XOR, 16 S-Boxes in parallel, and one P-Layer.
To store the internal state and the key, a 64-bit state register and an 80-bit key
register are introduced. Furthermore an 80-bit 2-to-1 multiplexer and a 64-bit
2-to-1 multiplexer to switch between the load phase and the round computation
phase are required. Key register, key input multiplexer, a 5-bit XOR, one S-Box
and a 61-bit shifter are merged into the component key scheduling. It computes
the round key on the fly. Figure 2 presents the signal structure of the round
based approach for present. At first the key and the plaintext are stored into
the accordant register. After each round the internal state is stored into the
state register. After 31 rounds the state is finally processed via XOR with the
last round key. The control logic is implemented as a Finite State Machine (FSM)
and a 5-bit counter to count the rounds. The FSM also controls the multiplexers
to switch between load and encryption phase.
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Fig. 2. Block diagram of the round-based present architecture

To reduce the used area and power we make use of clock gating. It can
be applied to synchronous load enable registers, which are groups of flip-flops
that are connected to the same clock and control signals. Normally a register is
implemented by use of a flip-flop, a feedback loop, and a multiplexer. When this
register bank maintains the same logic value through multiple clock cycles its
clock network, the multiplexers and the flip-flops unnecessarily consume power.
Clock gating eliminates the feedback nets and multiplexers inserting a latch



and a 2-input gate in the clock net of the registers. The latch prevents glitches
on the enable signal. By controlling the clock signal for the register bank, the
need for reloading the same value in the register through multiple clock cycles
is eliminated. Clock gating reduces the clock network power dissipation, relaxes
the data path timing, and reduces routing congestion by removing feedback
multiplexer loops. For designs that have large multi-bit registers, clock gating
can save power and further reduce the number of gates in the design. However,
for smaller register banks, the overhead of adding logic to the clock tree might
not compare favorably to the power saved by eliminating a few feedback nets
and multiplexers.

3.2 Parallel architecture

The main goal of the parallel design is to achieve a high throughput rate. There-
fore the 31 time loop is unrolled, so all XORs, S-Boxes, and P-Layers are cas-
caded. This will lead to high area effort and power consumption, but also to high
data throughput. The required round key is generated by taking the right bits
from the 80-bit key and if necessary pass them through a S-Box or add a round-
counter value. All subkeys are available in parallel and no register is needed to
hold the key. Figure 3 shows the signal diagram of the pipelined architecture. It
consists of 32 XORs, 496 S-Boxes, and 31 P-Layeres for the datapath. The key-
path consists of 31 S-Boxes and 31 XORs for key scheduling. The roundcounter
input of the XOR is hard wired. First the given 64-bit plaintext and the first
round key are xored. The result is split up into 16 4-bit blocks. Each block is
processed by a 4-bit S-Box in parallel. The 64-bit P-Layer transposes the bits
at the end of each the 31 rounds. Note that, the 32th round consists only of the
XOR operation.
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Fig. 3. Datapath of the pipelined parallel present architecture

This straight forward approach does not achieve a high maximum operat-
ing frequency. This results from the long critical path. The input signal has to
propagate through all XOR and S-Box gates. The more gates belong to the path
the higher is the resulting capacitance to be switched. So the time period for a
switching event is stretched. To shorten the critical path, flip-flops as pipeline
stages were installed after each P-Layer (see Figure 3). On the one hand this



increases the chip area and power consumption, but on the other hand the max-
imum frequency can be raised significantly. We assume the key to be stable
for many encryption operations. Thus roundkeys do not propagate through the
pipeline and need not to be stored in additional FFs.

3.3 Serialized approach

This architecture is a further modification on the round based architecture de-
scribed in Section 3.1. To save more chip area, the data structure is reduced to
4-bit. One of the most area consuming parts of present are the 16 S-Boxes in
parallel. So only one of them is used to represent the substitution layer, which is
also shared between the data path and the key scheduling. Another power and
area consuming part are the large input multiplexers. We use a 4-bit interface
to read in key and plaintext. This area savings come at the disadvantage of a
longer computation time. Only 4-bit are processed during one clock cycle and we
need 20 clock cycles for initialization. An additional 4-bit counter upgrades the
FSM to control the processing of the internal state. Therefore it takes additional
15 cycles to compute the substitution layer of each round. As one can see in
Figure 4 the signal diagram still shows a 64-bit wide and a 80-bit wide path.
The main problem is to serialize the permutation layer. So we choose a memory
structure with two different operation modes. In the first mode it behaves like
a shift register. During load phase and S-Box computation phase the 4-bit in-
put is shifted to the left. The 4-bit output is appended at the beginning. If the
P-Layer is computed all bits are read in parallel and the 64-bit wide or 80-bit
wide input and output is used. Each memory element consists of scan flip-flops,
i.e. a D-flip-flop with integrated multiplexer, which saves area compared to one
normal D-flip-flop and a seperated multiplexer. One further advantage is the re-
duced computation time, so we need only one clock cycle for the whole P-layer.
A 4-bit computation scheme would lead to much more multiplexers. All together
we need 17 clock cycles per round to compute the new state.

3.4 Crypto coprocessor

To equip a smart device with cryptographic functions there are different ways
to implement them. The first is to write software code. This solution requires
RAM to store the program and inhibits the microcontroller while performing
cryptographic algorithms. Another possibility is to implement the crypto part
straight into the the microcontroller core. A more flexible way is to construct a
cryptographic co-processor that is controlled by the main core. It uses a memory-
like interface for communication. To get a compact and also fast solution we use
the round based architecture with a modified finite state machine and added
further multiplexers. Now the plaintext is loaded in 32-bit blocks. As far as we
know this is the maximum bit width of microcontrollers for smart devices. The
co-processor is controlled by write and read enable signals. The address signal
selects the different bit blocks and encryption or decryption mode. Figure 5
illustrates the interfaces and the units.
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4 Evaluation of the results

In this section we first describe the used design flow and the metrics. Subse-
quently we compare our implementation results for the three scenarios low cost
passive smart devices, low cost active smart devices, and high end smart devices.
We considered the following optimization goals for the three scenarios: low cost
and passive smart devices should be optimized for area and power constraints
and low cost and active smart devices for area, energy, and time constraints.



Note that in our methodology high end devices are always contact smart cards
and hence should be optimized for time and energy constraints. Therefore we do
not distinguish between passive and active high end smart devices.

4.1 Metrics and used design flow

All architectures were developed and synthesized by using a script based de-
sign flow. We used MentorGraphics FPGA Advantage 8.1 for HDL source code
construction and functional verification. Then the RTL description was syn-
thesized with Synopsys Design Compiler Z-2007.03-SP5, which was also used
to generate the area, timing, and power estimation reports. The main effort
of synthesis process was area optimization. The S-Box is described as boolean
equation which leads to a combinatorial logic implementation. The P-Layer is
only simple wiring, which is not very costly in hardware. We used three different
standard cell libraries with different technology parameters: a 350 nm technol-
ogy MTC45000 from AMIS, a 250 nm technology SESAME-LP2 from IHP, and
a 180 nm technology UMCL18G212D3 from UMC. Each of them consists of a
different amount of cells and not all logical functions are implemented. This fact
will lead to different area result expressed in GE. Following definitions of metrics
were used:

Area: This metric represents the amount of area normalized to the area of
one NAND gate. This ratio is expressed in GE.

Cycles: Number of clock cycles to compute and read out the ciphertext.
Throughput: The rate at which new output is produced with respect to

time. The number of ciphertext bits is divided by the needed cycles and mul-
tiplied by the operating frequency. It is expressed in bits-per-second. With in-
creasing frequency the throughput will increase, too.

Power: The power consumption is estimated on the gate level by Pow-
erCompiler1. It consists of two major components: the static power which is
proportional to the area and the fabrication process. The dynamic power is pro-
portional to the switching activity (switching event probability and operating
frequency). Both components also depend on the supply voltage.

Current: The power consumption divided by the typical core voltage of the
process. These are for AMI 3.3V, for IHP 2.5V, and for UMC 1.8V.

Throughput to area ratio: This representation is used as a measure of
design efficiency.

Maximum frequency: There are many connections between the input
and output pins. The delay of each gate forms a timing path for the signals.
The slowest path will set the upper bound of clock frequency. Note that it might
be possible to increase the max. frequency, but this will also increase area and
power.

The interested reader can find more detailed tables with syntheses results in
the appendix.

1 Note that power estimations on the transistor level are more accurate. However, this
also requires further design steps in the design flow, e.g. place&route.



4.2 Low cost passive smart devices

Table 1 shows the synthesis results for 100 kHz clock frequency, which is a
typical operating frequency of RFID tags. Smart devices with integrated con-
tactless functionality have strict area and power constraints. For this purpose
we propose a serialized implementation which will consume low area and power
resources. Our serial implementation uses about 1000 GE of area. To the best
of our knowledge this is the smallest implementation of a cryptographic algo-
rithm with a moderate security level. Even implementations of the stream ciphers
Grain80 and Trivium require more area (1294 GE and 1857 GE, respectively [9]).
For comparison with block ciphers we choose two AES implementations with a
reduced datapath from Feldhofer et al. [6] and Hämäläinen et al. [10]. Further-
more there exists only a reduced datapath implementation of the lightweight
block cipher SEA without key scheduling component and control logic. Note
that a similar implementation with present would only require around 40 GE
in 0.18µm UMC technology. The power consumption of our implementations
show a large variation depending on the core voltage of the library, but the
0.18µm technology consumption is still the lowest compared to the other archi-
tectures. Note that power figures are highly technology dependent, therefore a
fair comparison is only possible if the same technology was used.

Cipher Tech. Datapath Freq. Area Throughp. Cycles Power
[µm] [Bit] [MHz] [GE] [Kbps] [µW ]

PRESENT-80 0.35 4 0.1 1,000 11.4 563 11.20
PRESENT-80 0.25 4 0.1 1,169 11.4 563 4.24
PRESENT-80 0.18 4 0.1 1,075 11.4 563 2.52

Feldhofer AES [6] 0.35 8 0.1 3400 12.4 1032 4.50
Hämäläinen AES [10] 0.13 8 80 3100 121 160 -

SEA [15] 0.13 8 0.1 449 50 3.22

better is lower higher lower lower
Table 1. Implementation results of minimal datapath architectures

4.3 Low cost active smart devices

The second scenario targets standard smart cards. To reduce fabrication costs
these cards are also area constraint. But in comparison to the prior scenario
the crypto core draws his energy from a battery of a pervasive device or via the
physical contact of the reading device. So the execution time is of major interest.
The round based implementation shows a good trade off between area, time,
throughput, and energy consumption. It does not consume significant more area
and energy than the serial one, but needs much less clock cycles for computation.
The results are compared to other known round based implementations that



means a new internal state is computed every clock cycle. There are results for
the ICEBERG [21] and the HIGHT [11] block cipher. Both of them use a 64-
bit datapath architecture. In Mace et al. [15] different ASIC implementations
of SEA had been characterized. We choose the 96-bit architecture for better
comparison to the other datapaths. The results in Table 2 illustrate the very
compact design of the present block cipher. Even the -normalized to 10 MHz.-
throughput is only outperformed by the ICEBERG implementation., but again,
we do not consider high throughput as highly relevant for this device class.

Cipher Tech. Datapath Freq. Area Tput Energy/Bit Power
[µm] [Bit] [MHz] [GE] [Mbps] [pJ/bit] [µW ]

PRESENT-80 0.35 64 10 1561 20.6 170.5 3520.0
PRESENT-80 0.25 64 10 1594 20.6 21.1 436.0
PRESENT-80 0.18 64 10 1705 20.6 3.7 77.1

SEA [15] 0.13 96 250 3758 258.0 19.8 5102.0
ICEBERG [15] 0.13 64 250 7732 1000.0 9.6 9577.0

HIGHT [11] 0.25 64 80 3048 150.6 - -

better is lower higher lower lower
Table 2. Implementation results of the round based datapath architectures

4.4 High end active smart devices

In the third scenario there are no limitations for energy consumption. The task
of the co-processor is to relieve the micro controller of the cryptographic com-
putations. The design of this assistant should deliver results fast and consume
as less area as possible to be cost-effective. One approach is to use a pipelined
architecture. But Table 3 discloses that the pipelined implementation generates
a very high throughput at the expense of area and power. The basic message is
that scaling of operation frequency has a great impact on power consumption.
The area is barely affected by this circumstance, because we chose an area op-
timize synthesis approach. If we get to higher frequencies the capacitances will
become increasingly important. So cells with a higher driving strength must be
used to drive the load and the area will increase conspicuously. In addition one
has to be aware of the input/output interface. Up to now there exist only smart
cards with 32-bit micro controllers. The best choice is to implement a round
based architecture with an 32-bit I/O interface. In literature can be found sev-
eral AES implementations that are up to the mark. We compare the present

implementations to Pramstaller et al. [19] and Satoh et al. [20]. Also a commer-
cial solution by Cast Inc. [4] is listed. Table 4 shows the results for the different
implementations. As there are many smart cards equipped with 8-bit microcon-
trollers we list the results for an 8-bit interface, too. The present co-processor



is much more compact than the other implementations and also needs less clock
cycles to compute the ciphertext.

Library Area Power Tput/Area crit. Path max Freq. max .Tput
[GE] [µW ] [kbps/µm2] [ns] [GHz] [Mbps]

AMI 0.35 µm 24,345.87 81295.00 0.486811614 12.80 0.1 5,000.0
IHP 0.25 µm 25,193.00 11659.00 0.900080911 4.78 0.2 13,389.1

UMC 0.18 µm 27,027.69 6888.00 2.446979668 6.26 0.2 10,223.6

better is lower lower higher lower higher higher
Table 3. Implementation results of pipelined architecture @ 10 MHz

Cipher Tech. Datapath max Freq. Area Throughp. Cycles
[µm] [Bit] [MHz] [GE] [Mbps]

PRESENT-128 0.35 32 143 2,681 234 39
PRESENT-128 0.25 32 141 2,917 231 39
PRESENT-128 0.18 32 323 2,989 529 39

PRESENT-128 0.35 8 131 2,587 133 63
PRESENT-128 0.25 8 121 2,851 123 63
PRESENT-128 0.18 8 353 2,900 359 63

CAST AES [4] 0.18 32 300 124,000 872 44
Satoh AES [20] 0.11 32 131 54,000 311 54

Pramstaller AES [19] 0.6 32 50 85,000 70 92

better is higher lower higher lower
Table 4. Implementation results of co-processor architectures

5 Conclusions

In this paper we have pointed out that there is, due to harsh cost constraints
inherent of mass deployment, a strong need for area optimized implementation
of cryptographic algorithms. Furthermore, we presented the implementation re-
sults of three different architectures of the block cipher present. The pipelined
version achieves a high throughput to area ratio but also consumes the most area
and current compared to the other architectures. Therefore this architecture may
be used in high end smart devices and the back end systems. The serial version
can be implemented with as few as 1000 GE, which is to the best of our knowl-
edge the smallest implementation of a cryptographic algorithm with a moderate
security level. However, this significant area savings come at the disadvantage of



a long processing time of 563 cycles. This architecture is best suited for low cost
passive smart devices such as passive RFID tags and contactless smart cards.

Interestingly, the round version draws for two of the three different libraries
nearly the same current consumption. It requires about 50% more area but also
achieves a relatively high throughput rate compared to the serialized architec-
ture. This in turns yields a good energy consumption per encryption, hence this
architecture is well suited for low cost active smart devices such as wireless sen-
sor nodes, RFID reader handhelds, and contact smart cards. Furthermore this
architecture can be used to construct a cryptographic coprocessor with very low
area consumption and a high throughput.
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6 Appendix

Following abbreviations are used in the subsequent tables
Cur - Current
Tput/Area - Throughput/Area
mFreq - maximum Frequency
mTput - maximum Throughput

Library Area Area Power Cur Tput/Area Path mFreq mTput
[GE] [µm2] [µW ] [µA] [kbps/µm2] [ns] [GHz] [Mbps]

AMI 0.35 µm 1,524.77 82,338 33.40 10.12 0.0024 1.53 0.65 1,307.2
IHP 0.25 µm 1,594.25 44,996 4.84 1.94 0.0044 0.72 1.39 2,777.8

UMC 0.18 µm 1,650.30 15,970 3.86 2.14 0.0125 4.57 0.22 437.6

better is lower lower lower lower higher lower higher higher
Table 5. Implementation results of round @ 100 kHz



Library Area Area Power Cur Tput/Area Path mFreq mTput
[GE] [µm2] [µW ] [µA] [kbps/µm2] [ns] [GHz] [Mbps]

AMI 0.35 µm 1,560.5 84,268 3520.0 1066.7 0.2450 1.23 0.81 1,678.5
IHP 0.25 µm 1,594.2 44,996 436.0 174.4 0.4588 0.61 1.64 3,384.5

UMC 0.18 µm 1,706.0 16,509 77.1 42.8 1.2506 0.51 1.96 4,048.1

better is lower lower lower lower higher lower higher higher
Table 6. Implementation results of round @ 10 MHz

Library Area Area Power Cur Tput/Area Path mFreq mTput
[GE] [µm2] [µW ] [µA] [kbps/µm2] [ns] [GHz] [Mbps]

AMI 0.35 µm 24,247 1,309,354 772.0 233.9 0.0049 13.84 0.07 4,624.3
IHP 0.25 µm 25,193 711,047 121.0 48.4 0.0090 4.98 0.20 12,851.4

UMC 0.18 µm 27,009 261,366 72.2 40.1 0.0245 6.78 0.15 9,439.5

better is lower lower lower lower higher lower higher higher
Table 7. Implementation results of pipeline @ 100 kHz

Library Area Area Power Cur Tput/Area Path mFreq mTput
[GE] [µm2] [µW ] [µA] [kbps/µm2] [ns] [GHz] [Mbps]

AMI 0.35 µm 24,346 1,314,677 81295.0 24634.8 0.4868 12.8 0.08 5,000
IHP 0.25 µm 25,193 711,047 11659.0 4663.6 0.9001 4.78 0.21 13,389

UMC 0.18 µm 27,028 261,547 6888.0 3826.7 2.4470 6.26 0.16 10,224

better is lower lower lower lower higher lower higher higher
Table 8. Implementation results of pipeline @ 10 MHz

Library Area Area Power Cur Tput/Area Path mFreq mTput
[GE] [µm2] [µW ] [µA] [kbps/µm2] [ns] [GHz] [Mbps]

AMI 0.35 µm 999.5 53,974 11.20 3.39 0.0002 1.89 0.5 60.1
IHP 0.25 µm 1,168.8 32,987 4.24 1.70 0.0003 0.66 1.5 172.2

UMC 0.18 µm 1,075.0 10,403 2.52 1.40 0.0011 0.9 1.1 126.3

better is lower lower lower lower higher lower higher higher
Table 9. Implementation results of serial @ 100 kHz

Library Area Area Power Cur. Tput/Area cPath mFreq. mTput
[GE] [µm2] [µW ] [µA] [kbps/µm2] [ns] [GHz] [Mbps]

AMI 0.35 µm 1,001.19 54,064 1123.00 340.30 0.0210 1.44 0.69 78.9
IHP 0.25 µm 1,168.75 32,987 421.00 168.40 0.0345 0.62 1.61 183.3

UMC 0.18 µm 1,074.98 10,403 247.00 137.22 0.1093 0.8 1.25 142.1

better is lower lower lower lower higher lower higher higher
Table 10. Implementation results of serial @ 10 MHz


